RSS

Archiwa tagu: Łożyskowanie

„Odrzut” może Cię naprawdę odrzucić!!!

Kiedyś puściłem wodze fantazji i zamarzyłem sobie wykonanie kompletnej dokumentacji czegoś, co już „umarło” albo jest na „wyginięciu”. Zobaczyłem zdjęcia motocykla LECH i tak bardzo mi się spodobał, że zacząłem szukać przydatnych informacji. Mało tego , bardzo mało. Niestety padłem!!!. Może nie dotarłem tam gdzie trzeba, a może wykazałem za mało determinacji. A miał być projekt kompletny, ot taki do ostatniej śrubeczki.

Potem pomyślałem sobie, no dobrze, skoro nie LECH, to może jakiś inny motocykl, albo rower, taki stary przedwojenny. Gdzie tam, to również marzenie ściętej głowy!

Tu przy okazji apel!!! Gdyby ktoś z Was miał dostęp do polskiej dokumentacji, która pozwoli odtworzyć polską myśl techniczną i opublikować ją, byłbym wdzięczny. Moje marzenie o motocyklu LECH, żyje dalej. Czy znajdzie się ktoś, kto mi pomoże?

Zrezygnowany pomyślałem o jakimś szaleństwie, no i wymyśliłem sobie modelarski silnik odrzutowy. W zasadzie powinno się mówić turbinowy, ale co tam. Wszyscy i tak wiedzą o co chodzi.

Poszukałem i znalazłem dokumentację i zabrałem się za silnik o symbolu WM54. Już od początku wydawał mi się jakaś archaiczny, ale udałem, że nie widzę tej wady. W sumie zdobyłem chyba 5 różnych kompletów dokumentacji, podobno kompletnych, ale to, jak się później okazało, nie było to prawdą.

Choć publikuję również na GRABCAD, przyznam się, że nie sprawdziłem czy czegoś tam nie ma i wziąłem się do roboty. Kiedy jednak, zorientowałem się, że coś mi w tym wszystkim nie pasuje, grzebałem dalej i o zgrozo, na GRABCAD, znalazłem wiele podobnych silników.

No cóż, pomyślałem sobie, zrobili, opublikowali , ale nie pracowali w Geomagic Design. Trudno więc, powtórzę ich robotę, według własnej wiedzy, ale tym razem w Geomagic Deisgn, zachowując pełen krytycyzm, w stosunku do konstrukcji. Powielenie dostępnej dokumentacji dało efekt pokazany na rysunku 1, ale. to tylko połowa prawdy. Bowiem jak zaznaczyłem, mam tych dokumentacji trochę, więc próbowałem „tworzyć” dalej. Dokumentacja jak dokumentacja, każda inna, każda na swój sposób „dostępna” i „kompletna”. A to w pełnej gamie kolorów, co „znakomicie ułatwia ” czytanie, a to bez wymiarów, a to o tej samej nazwie ale z innymi wymiarami. Słowem, pełna jasność i dostępność. Wszystko byłoby OK, gdyby nie świadomość, że silnik turbinowy, bo tak się powinno mówić, jest w istocie „maszyną prostą”, ot tak jak…., dopowiedzcie sobie sami.

Przy okazji mogę wykazać możliwości programu Geomagic Design,

Złożenie silnika.40

Rysunek 1 Silnik WM54

Odtwarzam, a nie projektuję więc jedynie narysowałem i rysuję dalej, bo to dopiero początek, ale nie ukrywam, że odrzuciło mnie. Odrzuciło, nie dlatego że dziś mamy 2015 rok, a to co zostało opublikowane to lata 90-te. Część rysunków pochodząca, od jedynego człowieka, który ma tu coś do powiedzenia czyli od Geralda Ruttena, już pokazuje rozsądne i nowocześniejsze podejście, ale wiele istotnych spraw nie zostało dopowiedzianych, a rysunki są niekompletne albo pokazane w sposób „ułatwiający ” korzystanie z nich.. Ostatnia seria silnika nosi, oznaczenie, o ile dobrze rozpoznałem sprawę, KJ-66. Tyle, że połapać się w kolejnych wersjach jest bardzo trudno, a w sensie wymiarowym, różnią się istotnie. Póki co, umówmy się, że jesteśmy w części pierwszej, którą nazwiemy KONSTRUKCJA.

Tyle wywodu, Teraz czas na efekty pracy i dochodzenia, bo w efekcie zmuszony byłem skonfrontować moją wiedzę, z tym co zostało opublikowane i powiedziane.

Zacznijmy więc od zasady jaka została przyjęta na samym początku. Patent USA pominę. Znajdzie go każdy, kto poszpera w internecie. Faktem jest, że podstawowym elementem modelarskiego silnika turbinowego jest turbina pochodząca z samochodowej turbosprężarki. Typów, kształtów, średnic itd, jest wiele, a dla tych niewtajemniczonych po częściowym demontażu wygląda to tak jak na rysunku 2.

5_40225

Rysunek 2 Przykładowa turbina samochodowa

W tym konkretnym przypadku, mamy do czynienia z jednym określonym typem turbiny, częściowo opisany poniżej.

Turbina Garrett 446335

Rysunek 3 Fragment katalogu z opisem turbiny.

. W pierwszym silniku, który zacząłem odtwarzać a jest nim WM54, jako turbinę sprężarki zastosowano element Garrett nr 446335-10 albo 446335-9.  Zdobyłem kilka zdjęć, ale różnią się pomiędzy sobą. Przyjąłem jednak, że jest tak jak w katalogu czyli 5 łopatek. Czy musi to być ten typ? Oczywiście NIE!!! Ceny, w sensie nowych elementów, możecie znaleźć w sieci. Mam wydruki, ale żadnej kryptoreklamy nie będzie. Zresztą, poszedłem do znajomego mechanika, i dostałem za darmo. Tego złomu w niektórych warsztatach  jest wiele.

Turbina Garret 446335

Rysunek 4 Zdjęcie turbiny Garrett nr 446335-10

Skoro wymarzyłem sobie motocykl narysowany do do ostatniej śrubki to i ten silnik tak zrobiłem, choć krew mnie zalewała, bo to archaizm straszny. Pragnę jednak być konsekwentny i zacznę tego co w środku czyli od wału, który pokazuję na rysunku 5

Shaft

Rysunek 5 Rysunek wałka silnika WM54

 

Gwintów oczywiście nie zaznaczyłem, bo już mi się nie chciało, ale jak wiadomo, zaznacza się je tylko na życzenie. A co mi tam jak kto chce, proszę bardzo, nawet po renderingu, patrz rysunek 6.

Shaft.51

Rysunek 6 Wałek silnika WM54

No i pięknie, jest wałek i na nim osadzona jest cała reszta elementów, zgodnie z projektem. Pierwotnie zamierzałem dokładać poszczególne elementy zgodnie z kolejnością montażu, ale nie zmieściłbym sie w rozsądnych ramach wpisu, i dlatego tak szybko tylko rysunki elementów.  O turbinie sprężarki już mówiłem, i pokazuję ją na rysunku 7.

Compressor 2- 5 łopatek

Rysunek 7 Turbina sprężarki – patrz katalog firmy Garrett nr 446335-10

Tunel wlotu powietrza, albo jak kto woli osłona turbiny sprężarki, pokazana została na rysunku 8

Intake

Rysunek 8 Osłona turbiny sprężarki

Jest to element, który można wykonać samodzielnie. Oczywiście punktem wyjścia jest posiadana turbina sprężarki. Jeśli jest to Garrett 446335-10, to osłona wyglądać będzie tak jak pokazałem.

Aby powietrze wtłaczane przez turbinę, trafiło do wnętrza silnika, musi zostać tam skierowane. Do stworzenia swoistego tunelu służy pokazany na rysunku 9 pierścień obudowy. Wstawiłem tu celowo wyraz przedni, aby zasygnalizować jego położenie w całej konstrukcji. Lepiej będzie to widać na przekroju.

Case Front-2

Rysunek 9 Przedni pierścień obudowy zewnętrznej – widok od tyłu.

Ten sam pierścień widziany od przodu, może zostać łatwo rozpoznany na rysunku nr 1. To właśnie na nim osadzona jest zewnętrzna obudowa.

Case Front-1

Rysunek 10 Przedni pierścień obudowy zewnętrznej – widok od przodu

Drugą cześć zasygnalizowanego tunelu stanowi dyfuzor, pokazany na rysunku 11. Tu akurat przedstawiony został widok od przodu, na którym można zaobserwować kierownice promieniowe, Powietrze po przejściu przez nie, trafia na łopatki poosiowe, powodujące jego zawirowanie we wnętrzu silnika. Kolorem pomarańczowym zaznaczyłem kanały, w których później umieszczone zostaną przewody: zasilania paliwe, gazem rozruchowym oraz smarowania łożysk.

Diffuser-1

Rysunek 11 Dyfuzor – widok od przodu

Kanały te lepiej są widoczne od tyłu. To może dziwić, ale w modelarstwie tak już jest, że wiele elementów osadzonych jest na zasadzie prostego zacisku, albo wciśnięcia, nie wymagającego przy demontażu, wielkiego wysiłku. Dlatego widać jedynie otwory, a właściwie gniazda, bez śladu jakichkolwiek gwintów czy nagwintowanych otworów śrub mocujących.

Diffiser -2

Rysunek 12 Dyfuzor – widok od tyłu

Teraz czas na komorę spalania, którą bez przewodów zasygnalizowanych trzech instalacji, pokazuję na rysunku 13.

Podzespół komory spalania-1

Rysunek 13 Komora spalania bez przewodów paliwowych i gazu rozruchowego

Jak widać jest to swego rodzaju puszka z otworami. Tu akurat konstruktorzy wykombinowali sobie, że zastosowanie czarodziejskich rurek wygiętych w secesyjne wygibasy oraz ‚trąbki” wlutowane pod kątem z zewnętrzny płaszcz komory, poprawią, lub w jakiś sposób wpłyną na wirowanie powietrza, a co za tym idzie na poprawę rozdrobnienia paliwa wpompowywanego do komory. Celowo używam tego słowa, bo nie może tu być mowy o wtryskiwaniu. Ot otwory za duże a ciśnienie za małe. Takie realia i tak chyba zostanie. No chyba, że …. Zycie niesie różne niespodzianki.

Na rysunku 14 pokazuję komorę spalania wraz z mocowaniem rurek „zawirowywacza paliwowego” widzianą od strony „gorącej”. Tak to nazwałem, choć nie wiem czy dobrze. Od przodu widać rurki, które mają poprawić zawirowanie powietrza dolotowego.

Podzespół komory spalania-2

Rysunek 14 Komora spalania – widok od tyłu.

Po ukryciu zewnętrznego płaszcza, widać to wszystko co w środku. Wiecie co, nie będę tego komentował. Pełen szacunku i pokory dla konstruktorów, podziwiam zegarmistrzowską robotę, podyktowaną wyobraźnią. Piszę to szczerze, bo faktycznie trzeba determinacji, aby stworzyć coś tak skomplikowanego.

Podzespół komory spalania-3

Rysunek 15 Widok komory spalania po ukryciu zewnętrznego płaszcza

Łatwo się domyślić, że te dwie tuleje, pozostawione na rysunku, służą do mocowania świec zapłonowych. Na tym etapie będę się starał omijać problemy związane z działaniem takiego silnika, a skupię się jedynie na rysunkach i kolejnych modyfikacjach.

Na rysunku 16 przedstawiam komorę z przewodami poszczególnych trzech instalacji, a dokładniejszy ich przebieg na kolejnych rysunkach 17, 18 i 19.

Przekrój

Rysunek 16 Komora spalania z zainstalowanymi przewodami zasilania paliwem, gazu rozruchowego i smarowania łożysk.

Na rysunku 17 dobrze widoczny przewód zasilania w gaz rozruchowy, a pod nim przewód zasilania łożysk w olej smarujący.

Złożenie silnika - przewody 1

Rysunek 17 Widok przebiegu przewodów zasilania i smarowania

 

 

Na rysunku 18 widać przewód zasilania w paliwo wraz z końcówkami.

Złożenie silnika - przewody 2

Rysunek 18 Widok przewodu zasilania w paliwo.

 

 

Rysunek 19 jest w zasadzie powtórzeniem obu poprzednich rysunków, ale starałem się tak ustawić, aby dokładniej zobrazować jak one biegną.

Złożenie silnika - przewody 3

Rysunek 19.

 

Czas na przejście z komory spalania do części gorącej silnika bowiem tu czeka coś co nazwałbym kolejnym dyfuzorem. Ot taka kierownica gazów wylotowych, której zadaniem jest odzyskanie maksymalnej energii i skierowanie jej na turbinę, która napędza wałek, na którym osadzona jest omawiana na samym początku, turbina sprężarki. Na rysunku 20 przedstawiam widok od strony sprężania, czyli przodu.

NVG Outer-2

Rysunek 20 Dyfuzor gazów wylotowych – widok od przodu.

Od strony dysz wylotowych widok w zasadzie jest podobny. Rożnica sprowadza się jedynie do kierunku łopatek i szerokości kołnierza.

NVG Outer-1

Rysunek 21 Dyfuzor gazów wylotowych – widok od strony dyszy wylotowej.

Ta część w aktualnie sprzedawanych silników oraz proponowanych do wykonania we własnym zakresie, powinna być kupiona. Zalecana jest firma JET MAX, którą często się powtarza na stronie Geralda Ruttena. Możecie oczywiście kupić u dostawców z wielkiego wschodniego kraju, gdzie produkuje się wszystko . Ogólnie rzecz biorąc, w pierwszych wykonaniach, ten dyfuzor wykonany był z trzech elementów. Pokazuję je na kolejnych rysunkach. Szczerze mówiąc, jeśli myślę o modelarstwie, to mam wątpliwości co do „gotowizny”, bo takie podejście wbrew pozorom zamyka drogę do nowych rozwiązań, a przynajmniej ją ogranicza w sposób bardzo istotny. Może jeszcze ten watek rozwinę, choć nie obiecuję.

NVG Outer -part 1

Rysunek 21 Pierścień zewnętrzny dyfuzora

W podobny sposób wykonywano pierścień wewnętrzny. Łopatki to wycięte kawałki blach, które były przyspawane do obu pierścieni i w efekcie powstawał dyfuzor pokazany na rysunku 22.

NVG Outer ver 2

Rysunek 22 Dyfuzor zmontowany z elementów

Na kolejnych rysunkach przedstawiam przykłady takiego wykonania.

ngv2011

Rysunek 22 Przykład elementów dyfuzora po toczeniu i frezowaniu rowków na łopatki

Na rysunku 23 przedstawiam przykład dyfuzora po eksploatacji, wykonanego wg omawianej technologii, po użytkowaniu z widocznymi przebarwieniami.

NGVwelded

Rysunek 23 Dyfuzor po użytkowaniu z nalotami i przebarwieniami

Na rysunkach 24, 25 i 26 przedstawiam elementy do wykonania dyfuzora w sposób chyba najprostszy. Wycięte laserowo taśmy z gniazdami  na łopatki, poddawane sa wyginaniu na walcarce i spawane. Dotyczy to zarówno pierścienia zewnętrznego jak i wewnętrznego. W gniazdach osadza się łopatki i spawa.

r0013314f

Rysunek 24 Taśmy do wykonania pierścienia zewnętrznego dyfuzora

Na rysunku 25 widoczne są taśmy prawdopodobnie do wykonania pierścienia wewnętrznego. Wnioskuję to po ich szerokości i długości.

r0013312

Rysunek 25 Taśmy do wykonania pierścienia wewnętrznego.

Rysunek 25 przedstawia wycięte laserowo łopatki dyfuzora.

r0013313

Rysunek 26 Wycięte z blachy łopatki dyfuzora

W przypadku dyfuzorów, tak wlotowego jak i wylotowego, mówiąc kolokwialnie, „bólu głowy” nie ma. Elementy te są statyczne i można bez problemu z nimi eksperymentować. Oczywiście muszą być sztywne, a w przypadku dyfuzora „gorącego”, raczej żaroodporne. Czy ten warunek zawsze jest spełniany? To pytanie zostawiam bez odpowiedzi..

Turbina wylotowa, ta „gorąca” raczej powinna być kupiona. Oczywiście ktoś powie – „nie takie rzeczy, ze szwagrem, na podwórku robiliśmy”. No niby tak, tyle, że to cacko może się rozkręcić do 150 000 obr/min. Dlatego lepiej kupić u POWAŻNEGO producenta i dopiero się bawić. Poniżej przedstawiam dwa rysunki. Nie wiem, która turbina jest godna uwagi, a która raczej nie. Pokazuję jedynie jak wygląda to, co w dokumentacji nazywa się „blank” i jak wyglądają turbinki wstępnie wyważone. Ale jakby co, nic o tym nie wiem, tu mnie nie było, a w ogóle to zarobiony jestem i już.

turbinec

Rysunek 26 Turbina przed obórką skrawaniem

Te na rysunku 27 są chińskie. Jak widać duża rozpiętość wymiarowa.

Jet-Parts-Turbine-Wheel-

Rysunek 27 Przykład chińskich turbin.

Nie ważne co kto produkuje, bowiem trzymając się głównej myśli tego wpisu, Ta turbinka, jaką zastosowano w silniku WM54 wygląda tak jak na rysunku 28.

Turbine Weel-2

Rysunek 28 Turbina „gorąca”

No! Teraz do ostatecznej postaci silnika już blisko. Pominąłem kilka elementów, takich jak podłączenia zewnętrzne oraz filtr powietrza oraz dysze wylotowe. Niech będzie mi to darowane. Jeszcze tylko świece i mamy to co na rysunku 29

Z2

Rysunek 29 Silnik MW54 bez osłony zewnętrznej

 

A na rysunku 30 silnik kompletny.

Z1

Rysunek 30 Kompletny silnik MW54

 

Jeszcze tylko wersje po renderingu. Wyglądają chyba bardziej interesująco, więc wybaczcie mi, umieszczę jedynie numery rysunków i pozwolę sobie ich nie podpisywać. Jest bowiem zupełnie inny problem, który powinien tu zagościć, czyli DYSKUSJA. Najpierw jednak rysunki.

Złożenie silnika.40

Rysunek 31

 

To samo od strony dysz wylotowych.

Złożenie silnika.41

Rysunek 32

 

Widok po zdjęciu osłony zewnętrznej.

Złożenie silnika.42

Rysunek 33

 

Albo bardziej z boku

Złożenie silnika.44

Rysunek 34

 

Po zdjęciu osłony turbiny sprężarki.

Złożenie silnika.45

Rysunek 35

 

Widok po zdjęciu dysz wylotowych

Złożenie silnika.47

Rysunek 36

 

Widok po ukryciu zewnętrznego płaszcza komory spalania

Złożenie silnika.49

Rysunek 37

Nie bez kozery zatrzymałem się w tym miejscu. Jak wcześniej zaznaczyłem, jestem pełen szacunku dla konstruktorów. Zastanawiam się jak bym się zachował na ich miejscu? Czy poszedłbym drogą tych przewodów w stylu fin de siecle? Coś mi się zdaje, że nie. Jakoś na logikę nie widzę funkcjonalnego zastosowania dla tych wygiętych rurek, a już dla „trąbek” wcale.

Jakoś na logikę wydawało mi się, że powietrze wtłaczane do komory spalania, z uwagi na ilość otworów w zewnętrznym płaszczu komory spalania, nie będzie chciało wchodzić od tyłu przez te rurki. Poza tym, dlaczego pchać przewody zasilające od tyłu komory, gdzie jest najwyższa temperatura? Ktoś powie, gorące paliwo szybciej odparowuje. No niby racja, ale czy to ma w tym przypadku jakieś znaczenie?

Przecież paliwo nie jest wtłaczane do wtryskiwaczy, bo ciśnienie wytwarzane przez pompki jest za małe. Wygląda to mniej więcej tak jak na rysunku 38. Może można zwiększyć ilość dostarczanego paliwa, ale będzie to jedynie wyższy płomień, w warunkach, gdy nie jest wtłaczane dodatkowe powietrze.

13a_jpg

Rysunek 38

Aby jednak nie zamotać się w aspektach sprawy, należy zacząć od początku.

Otóż kupując silnik dowiadujemy się, że zasilany powinien być paliwem JET A1. Pięknie, bowiem jest to paliwo stosowane w lotnictwie cywilnym. W lotnictwie wojskowym stosuje się paliwo F-34. W sumie właściwości tych różniących się od siebie paliw, mają jakąś wspólną płaszczyznę. Jest nimi budowa układu paliwowego realnego silnika turbinowego oraz……. jego resurs, czyli czas użytkowania.

Chętnych przyjrzenia się temu problemowi, zachęcam do zapoznania się z właściwościami fizyko-chemicznymi tych paliw i odszukania różnic. Dyskutować można długo. Wyróżniłbym dwa parametry, a w szczególności stabilność termooksydacyjną i smarność. O  tym dlaczego poruszam ten problem i co z tego wyniknie, napiszę następnym razem. Może być ciekawie i dziwnie. Zapewne niektórych zaskoczę.

Zapraszam serdecznie.

Jak zwykle, dokumentacje opublikowane na tym blogu sa dostępne. Proszę o kontakt.

Czekam jak zwykle na Waszą aktywność.

Pozdrawiam wszystkich.

Janusz

Reklamy
 

Tagi: , , , , , , , , , ,

Wyrzynarka włosowa bez zbędnych szczegółów

Dziś chciałbym, choćby na jakiś czas, zamknąć temat w wyrzynarki włosowej. Niewątpliwie, powrócę jeszcze do niego, bo cały czas  chodzą mi po głowie różne pomysły. Ot, choćby koncepcja wyrzynarki firmy Eclipse. Mam straszną ochotę za nią się zabrać.

Póki co, dokończę to, co zacząłem. W prezentowanym projekcie pomijam pewne drobiazgi, takie jak – oświetlenie, przedmuchiwanie miejsca pracy, docisk, itp. Całość pracy wykonałem w SolidWorks. Jednak z pokorą muszę stwierdzić, że mam problemy z wizualizacją, co pokazuję niżej. Z tej przyczyny, zmuszony byłem posiłkować się programem KeyShot 5.

Stan na dzień dzisiejszy przedstawiam na rysunkach poniżej.

Złozenie wyrzynarki  ver 2

Rysunek nr 1 Złożenie wyrzynarki włosowej

To samo lecz z drugiej strony

Złozenie wyrzynarki  ver 2-2

Rysunek nr 2 Widok z innej strony

Jak wcześniej zaznaczyłem, wizualizacja w SolidWorksie, jakoś mi nie wychodzi. Widać za mało umiem. Może kiedyś będzie lepiej, ale póki co wygląda to jak na rysunku 3.

Złozenie 1

Rysunek nr 3 Próba wizualizacji wyrzynarki włosowej.

Z KeyShot-em idzie mi chyba lepiej, stąd dalsze wizualizacje, do czasu opanowania tego zagadnienia w SolidWork, przedstawię jak dotąd. Tu akurat w kolorze żółtym.

Wyrzynarka włosowa  całość.1

Rysunek nr 4 Wizualizacja wyrzynarki włosowej – kolor żółty

Albo jak kto woli w kolorze zielonym.

Zozenie wyrzynarki  ver 2 1-10.12

Rysunek nr 5 Wizualizacja wyrzynarki włosowej – kolor zielony

Teraz czas omówić poszczególne podzespoły. Zacznijmy od podzespołu stołu. Przyjąłem, że będzie on konstrukcją spawaną, z blachy stalowej o grubości 5 mm. Materiał ten przyjąłem w celu zwiększenia ciężaru podstawy. Wydaje mi się, że nie ma nic gorszego od uciekającej maszyny. Tu akurat pojawią się wibracje, które sprzyjają różnego rodzaju „wędrówkom”.

To co nazwałem podgrupą stołu, przedstawiam na rysunku nr 6.

Podgrupa stołu ver 2ver 2

Rysunek nr 6. Widok podgrupy stołu.

Część elementów istotnych dla funkcjonalności, zasłania balt stołu, dlatego na rysunku 7 prezentuję widok od dołu.

Podgrupa stołu ver 2 2

Rysunek nr 7 Podgrupa stołu – widok od dołu.

Teraz łatwiej dostrzec elementy rozwiązania. Otóż jako generalną zasadę przyjąłem, że to nie stół ma się pochylać, ale sam mechanizm tnący, który osadzony jest na osiach, z których jedna napędzana jest przy pomocy przekładni ślimakowej, co pokazuję na rysunku 8.

Widok przekładni ślimakowej

Rysunek nr 8 Widok przekładni umożliwiającej pochylanie mechanizmu wyrzynarki

Wałek ślimaka napędzany jest ręcznie przy pomocy koła, pokazanego na rysunku 9. Jednocześnie widoczne jest łożysko (kolor żółty), firmy IGUS o symbolu JFM-081016. Jest to element drugiej mojej zasady. Otóż, we wszystkich moich projektach stosuję łożyska ślizgowe tej firmy. Uważam, że jest to najlepsze, a co najważniejsze, najtańsze rozwiązanie.

Podgrupa stołu ver 2 3

Rysunek nr 9. Koło regulacji pochylenia mechanizmu tnącego wyrzynarki.

Drugi koniec wałka napędu pochylania mechanizmu, osadziłem w łożysku o pełnej nazwie igubal – łożysko kołnierzowe EFSM-08. Jego konstrukcja jest bardzo ciekawa, ale to inny temat.

Podgrupa stołu ver 2 4

Rysunek nr 9 Widok na łożysko EFSM-08 firmy IGUS

Tak jak wcześniej zaznaczyłem, oś pochylania napędzana jest ręcznie, co pokazuję na rysunku nr 10.

Podgrupa stołu ver 2 5

Rysunek nr 10 Koło napędzające oś pochylania mechanizmu tnącego.

Sposób osadzenia w korpusie stołu, przedstawiam na rysunku nr 11, na którym jednocześnie pokazuję pozostałe elementy rozwiązania, umożliwiające pochylanie mechanizmu tnącego.

Zozenie wyrzynarki  ver 2 1-10.23

Rysunek nr 11 Widok elementów mechanizmu pochylania

To samo lecz w nieznacznie innym ujęciu pokazuję na rysunku 14. Tu widać wyraźnie dwie sprężyny napinające, które likwidują luzy przy pochylaniu mechanizmu tnącego.

Zozenie wyrzynarki  ver 2 1-10.27

Rysunek nr 12 Element składowe mechanizmu pochylania z widocznymi sprężynami napinającymi.

W celu ułatwienia ustawienia kata pochylenia, Oś stołu posiada wyciętą skalę od -45 do +45 stopni. Natomiast element koła ślimakowego nacięcie, które wskazuje na ustawiony kąt. Pokazuję to na rysunku nr 13.

Zozenie wyrzynarki  ver 2 1-10.19

Rysunek nr 13. Skala pochylenia mechanizmu tnącego.

Ten sam fragment ale z drugiej strony i chyba lepiej widoczny pokazuję na rysunku nr 14.

Zozenie wyrzynarki  ver 2 1-11 pochylona.31

Rysunek nr 14. Skala pochylenia mechanizmu tnącego oraz wskaźnik kąta na kole ślimakowym.

Jak to działa, mogliście zobaczyć na filmie. Natomiast w wybranych fazach, pokazuje na rysunkach nr 15 i 16.

Zozenie wyrzynarki  ver 2 1-11 pochylona.30

Rysunek nr 15 Pochylenie mechanizmu tnącego w stosunku do stołu.

I to samo w kolorze żółtym.

Wyrzynarka włosowa ver 2014-2.2

Rysunek nr 16 Pochylenie mechanizmu tnącego w stosunku do stołu

Czas na opis mechanizmu kinematycznego wyrzynarki. Najpierw kilka filmów

Elementy, które wchodzą w skład tego układu, pokazuję na rysunku 17. Część z nich opisywałem już ww wcześniejszych wpisach. PoTymi elementami są: podzespół regulacji mimosrodu, podzespół uchwytu górnego oraz podzespół uchwytu dolnego.

Zozenie wyrzynarki  ver 2 1-10.29

Rysunek nr 17 Elementy układu kinematycznego wyrzynarki.

Na rysunku 18 prezentuję cześć z tych elementów oraz ich umiejscowienie w korpusie.

Zozenie wyrzynarki  ver 2 1-10.20

Rysunek nr 18 Umiejscowienie elementów układu kinematycznego wyrzynarki

Rysunki nr 19 i 20 przedstawiają to sami, ale myślę, że pomogą dokładniej opisać omawiane zagadnienie.

Zozenie wyrzynarki  ver 2 1-10.26

Rysunek nr 19. Umiejscowienie elementów układu kinematycznego wyrzynarki

Rysunek 20 jest jak gdyby rozszerzeniem układu kinematycznego, bowiem zawiera elementy regulacji kąta pochylenia.

Zozenie wyrzynarki  ver 2 1-10.27

Rysunek nr 20. Umiejscowienie elementów układu kinematycznego wyrzynarki

Elementami , które pozostały do omówienia sa podgrupy uchwytów. Tak naprawdę, to zostały już omówione we wcześniejszych wpisach.

Teraz jednak krótki film.

Podgrupa uchwytu górnego nie została zmieniona. Jeśli nawet, to w stopniu, który nie upoważnia do szczegółowego opisu. Jak zwykle, wszystkie ruchome elementy zostały ułożyskowane przy pomocy łożysk ślizgowych firmy IGUS. Szczegóły budowy są dostępne, tak jak i pozostałych podzespołów. Zainteresowanym mogę wysłać pliki źródłowe.

Podgrupa uchwytu górnego v2

Rysunek nr 21 Podgrupa uchwytu górnego

To samo na rysunku 22 ale po wizualizacji.Sugeruję sięgnięcie do wcześniejszych wpisów.

Wyrzynarka włosowa  całość.2

Rysunek nr 22. Wizualizacja podgrupy uchwytu górnego

Na rysunku nr 22, prezentuję wyizolowaną podgrupę uchwytu górnego, bez szczegółów dotyczacych materiałów, z jakich jest wykonana.

Podgrupa uchwytu górnego ver 2.4

Rysunek nr 23. Wyizolowana podgrupa uchwytu górnego

I już ostatni rysunek, wykonany podczas ostatniej wizualizacji. Zamieszczam go jedynie dla porządku.

Zozenie wyrzynarki  ver 2 1-10.15

Rysunek nr 24. Podgrupa uchwytu górnego.

Teraz czas na ostatnia podgrupę, czyli podgrupę uchwytu dolnego.

Tu również nic się nie zmieniło. Zdecydowałem się jak widać na mocowanie brzeszczota w kamieniu, wychodząc z założenia, że mocowanie jego pod stołem, będzie łatwiejsze.

Podgrupa uchwytu dolnego ver 2

Rysunek nr 25 Podgrupa uchwytu dolnego.

Wcześniejsze wyizolowanie tej podgrupy pokazuję na rysunku nr 26.

Podgrupa uchytu dolnego z regulacją.8

Rysunek nr 26 Wyizolowana podgrupa uchwytu dolnego

I zostały jeszcze dwie wizualizacje, na żółto i zielono.

 

Wyrzynarka włosowa  całość.4

Rysunek nr 27 Wizualizacja podgrupy uchwytu dolnego – żółta

To rzecz gustu, ale zielona mi bardziej odpowiada, może to wczesna, bo dopiero jesień, tęsknota za wiosną?

Zozenie wyrzynarki  ver 2 1-10.16

Rysunek 28 Wizualizacja podgrupy uchwytu dolnego

I to już koniec przygody z wyrzynarką włosową w tym wydaniu. Pozostają jeszcze pragnienia aby rozwinąć temat w wydaniu firmy Eclipse. Jak sądzę do tego dojdzie, ale najpierw inne tematy, które czekają na publikacje.

Jak zwykle informuję,że zainteresowanym mogę przesłać pliki źródłowe i tych właśnie proszę o kontakt.

Wszystkich zaś serdecznie pozdrawiam, życząc rychłej wiosny.

JK

 

Tagi: , , , , , , , , , , ,

Kamień na kamieniu, czyli jak mocować brzeszczot w pilarce włosowej

Kamień na kamieniu, czyli jak mocować brzeszczot w pilarce włosowej

Dziś pragnę zacząć od oświadczenia, że nie mam zamiaru wkładać kija w mrowisko. Pragnę jedynie wykazać, że nie wszystko, co dotyczy mocowania brzeszczotów w wyrzynarkach włosowych, jest jasne i oczywiste.

Śledząc Internet zauważyłem, że użytkownicy podzielili się na trzy grupy. Jedna, woli koncepcję mocowania brzeszczota w kamieniu, druga, wręcz przeciwnie, trzecia, najliczniejsza, ma to gdzieś.

Tę najliczniejszą grupę stanowią ci, którzy kierują się najniższą ceną, a co za tym idzie, kupują tanie atrapy wyrzynarek i zmuszeni są zaakceptować sposób mocowania brzeszczota.

Należałoby wyjść od samego początku i spróbować sobie odpowiedzieć na pytanie, dlaczego zastosowano kamienie dociskowe, jako sposób mocowania, a jako chwalebny przykład weźmy wyrzynarkę firmy Hegner. A jest to konstrukcja posiadająca wszelkie zalety. Po pierwsze jest ona tak prosta, że aż prymitywna. Zastosowane elementy korpusu są grube, a przez to sztywne i stabilne, a przyjęty model kinematyczny, wymusza określony sposób mocowania brzeszczota.

Wyrzynarek stosujących podobną zasadę jest wiele. Wystarczy sięgną do Internetu. Zresztą jest gotowa książka na ten temat. Link do niej jest długi, ale nic na to nie poradzę: http://books.google.pl/books?id=YL4uLA5lAogC&pg=PA18&lpg=PA18&dq=eclipse+scroll+saw+parts&source=bl&ots=VnijChIto3&sig=sZNkxwR0iLdPCm7L-qP_cFit5Wo&hl=pl&sa=X&ei=ZMn7UsSsJYf_ygOHwYCIBw&ved=0CDQQ6AEwAQ#v=onepage&q=eclipse%20scroll%20saw%20parts&f=false.

Ale nie tylko. Są również najprzeróżniejsze analizy i porównania, ot chociażby http://pl.scribd.com/doc/33519964/Scroll-Saw-Buyer%E2%80%99s-Guide.

A jaki płynie z nich wniosek?  A no jeden! Wszystko ma swoje zalety i wady, a nade wszystko …..CENĘ!

Co do zasady działania, polecam kilka stron. Oto ich adresy: http://www.mekanizmalar.com/scroll-saw-parallel-link-system.html, oraz http://www.mekanizmalar.com/scroll-saw-parallel-arm-system.html . Warto też przyjrzeć się opisowi występującemu pod tym adresem: http://scrollsawproject-crafts.blogspot.com/2011/02/basic-scroll-saw.html , choć w odniesieniu do jednego z rysunków należy mieć zastrzeżenia, ale za inicjatywę należy się uznanie:

W odniesieniu do zastosowanych rozwiązań, każdy chwali swoje, czego ewidentnym dowodem jest rysunek 1.

Kąty w EXKALIBUR

Rysunek 1 Kąt pomiędzy stołem a brzeszczotem, przy dobrym jego zamocowaniu zawsze jest prosty

Faktem jest , że kąty, przy tym rozwiązaniu, są stałe, ale jednocześnie o tyle śmieszne, że każda wyrzynarka za wyjątkiem jednej obarczona jest cechą, pokazaną na rysunku 2 i w opisach wskazanych wcześniej, pod załączonymi linkami.

10411_FigA.jpg-500x0

Rysunek 2 Schemat kinematyczny układu równoległego ramion wyrzynarki

Byłoby czymś dziwnym aby rysunek 2 i następny, nie pochodziły z tego samego źródła, czyli z firmy Eclipse.

10411_FigB.jpg-500x0

Rysunek 3 Zasada działania wyrzynarki firmy Eclipse

Faktem jest, że przyjęty przez Eclipse, układ kinematyczny umożliwia jedynie pionowy ruch posuwisto-zwrotny, bez żadnych dodatkowych ruchów typu :kołysanie” albo oscylacyjny ruch do przodu właściwy wyrzynarkom Eksalibur albo DeWalt oraz hegner i im podobnych, co wykazałem, na podstawie analizy geometrycznej, w jednym z wcześniejszych wpisów.

Czasami żartując mówimy- „ten typ tak ma”. Tyle, że w tym przypadku trudno ocenić czy to cecha charakterystyczna tego rozwiązania, czy też może zaleta, albo wada.

O samej wyrzynarce Eclipse, niewiele można powiedzieć, poza ogólnymi informacjami typu handlowego i reklamowego. Rzecz w tym, że o ile dane dotyczące konstrukcji innych wyrzynarek, publikowane są w postaci listy części zamiennych wraz z ich rysunkami, o tyle Eclipse, strzeże ich jak źrenicy oka. Pokazuje za to takie ciekawostki:

Moneta podczas pracy Eclipse

Rysunek 4 „Potencjalny” dowód na „potencjalny” brak drgań

Proszę zwrócić uwagę na monetę, a właściwie na materiał z jakiego ją wykonano. Bo gdyby nie ten napis NICKEL, to słowo daję, chyba bym się nie domyślił. A pozostali wytwórcy? Bardzo proszę! Do wyboru, do koloru.

Exkalibur fragment

Rysunek 5 Fragment dokumentacji EX-30

Ktoś poszukuje Hegnera? Bardzo proszę.

Hegner-4

Rysunek 6 Fragment instrukcji wyrzynarki Hegner

A może patent? Służę uprzejmie.

Patent USA

Rysunek nr 7 Patent USA

No, ale czas wracać do dylematu: z kamieniem czy bez?

Odnoszę wrażenie, że to sztuczny problem, bo chwali się to, co się ma, albo to o czym się marzy. A potem, często wraca się do starych przyzwyczajeń, co pokazuję na poniższych rysunkach, zaczerpniętych ze strony http://stevedgood.com/community/index.php?topic=6303.0. Autor zastrzega, że przerabiał Hegnera.

Zdjęcie 1

Rysunek 8 Stan wyjściowy

Z uwagi na ciągłe problemy, zostało zrobione to co na rysunku 9. Czyli mamy „biorcę”.

Zdjęcie 5

Rysunek 9 Miejsce odcięcia ramienia

A dawcą była stara wyrzynarka, prawdopodobnie RYOBI SC164VS lub podobna, o czym mogą świadczyć rysunki 10 i 11.

a6da17df64

Rys 10 Prawdopodobnie wyrzynarka RYOBI SC164VS

Do tego momentu nie byłem pewien, ale odnalazłem to:

Ryobi-Blade-Change-System

Rysunek 11 Zdjęcie wyrzynarki VRYOBI SC164VS z folderu reklamowego

No i mamy „dawcę” oraz „organ” czyli element pokazany na rysunku 12.

Zdjęcie 4

Rysunek 12 Wymontowany uchwyt

A efekt finalny pokazany został na rysunku 13.

Zdjęcie 6

Rysunek 13 Efekt finalny przeróbki

Albo to samo z innej strony i chyba bardziej dokładniej.

Zdjęcie 7

Rysunek 14 Widok z innej strony

No właściwie jak jest? Które rozwiązanie jest lepsze?

Nie wiem!!!! Każdy niech wybiera to co lubi i to, co w jego przekonaniu, jest wygodniejsze. Ja jednak pragnę dokończyć to co zacząłem. Może kiedyś spróbuję zaprojektować coś na wzór Eclipse. Zobaczymy. Teraz jednak wracam do „moich” uchwytów, aby później przejść do pozostałych elementów i zakończyć kompletną koncepcją wyrzynarki. podkreślam raz jeszcze, KONCEPCJĘ, a nie zamknięty projekt. Przecież celem mojego blogu jest prezentacja projektów, przybliżenia możliwości poszczególnych narzędzi i zachęcenia do korzystania z nich, a nie pokazywanie zdjęć i dowodzenie wyższości Świąt Bożego Narodzenia nad Świętami Wielkiej Nocy.

Jak zapewne zauważyliście, ponownie wykorzystuję Geomagic Design. No i co ja pocznę, skoro bardzo lubię to narzędzie. Może przez jego możliwości wyłożone na pulpicie w prosty i przystępny sposób, może przez przyzwyczajenie, może przez to, że mam? Zauważcie, to tak, jak z uchwytami. Lubię i już!!!!

Co zaś się tyczy uchwytów brzeszczotów. Mamy jakby trzy obszary albo jak kto woli problemy:

  • zastosować kamień zaciskowy czy nie
  • zapewnić naprężanie brzeszczota
  • zapewnić odpowiednie jego zaciśnięcie w uchwycie.

A może dać każdemu to co lubi. W przyjętej przeze mnie koncepcji górny i dolny uchwyt mogą być identyczne. Czyli tak na dobrą sprawę, górny można zamienić z dolnym. A jeśli podstawowe wymiary będą odpowiednie, to jeden może być z kamieniem, a drugi bez. Jak się chce, dowolnie, górny albo dolny.

Zacznijmy jednak od górnego, omówionego w poprzednim wpisie. Ponieważ troszkę go przerobiłem, pokażę zmiany.

Podgrupa uchwytu górnego ver 2 rys 5

Rysunek 15 Uchwyt brzeszczota omówiony w poprzednim wpisie

Na rysunku 15 przedstawiam rozwiązanie, które już pokazywałem. Jednak wprowadziłem zmiany polegające na zastosowaniu wkładki zaciskowej, wykonanej z blachy.

Jak mocować brzeszczot

Rysunek 16 Fragment instrukcji obsługi wyrzynarek EX-16, EX-21 i EX-30

Wkładka ta, powstała po przestudiowaniu instrukcji wyrzynarek EX-16, EX-21 i EX-30. Znalazłem tam podpowiedź, którą przytaczam na rysunku 16.

Zadałem sobie pytanie, po co właściwie jest ta lewa śruba, przecież można przyjąć, że bazą jest lewa ściana zacisku, natomiast w celu zapobieżenia ewentualnemu skręcaniu brzeszczota można wprowadzić coś pośredniego, co nie ulegnie skręceniu, a umożliwi docisk. I tak powstała ta wkładka, która z założenia powinna być wymienna w celu dostosowania do każdej grubości brzeszczota. Z tej przyczyny pojawił się również ten cylindryczny kanał w suwaku pokazanym na rysunku 17.

Suwak ver 2 rys 2

Rysunek 17 Kanał osadzenia wkładki zaciskowej.

Natomiast wkładka zaciskowa, pokazana została na rysunku 18. Wymyśliłem sobie, że będzie tak jak w przypadku kamieni zaciskowych do Hegnera, a więc będzie wymiar 0,5 mm, 0,7 mm i 1,0 mm. Z uwagi na fakt, że cylindryczny kanał ma jedną określoną średnicę, wkładki zaciskowe powinny być wykonane z blachy o różnych grubościach.

Blaszka sprężynująca zacisku 0,5 rys 3

Rysunek 18 Wkładka zaciskowa

Widok z góry pokazuję na rysunku 19.

Blaszka sprężynująca zacisku 0,5

Rysunek 19 Wkładka zaciskowa – widok z góry

Z kolei na rysunku 20 przedstawiam cały zestaw wymiarowy, od 0,5 do 1 mm.

Porównanie blaszek zaciskowych

Rysunek 20 Zestaw wszystkich wstawek zaciskowych dla brzeszczotów o grubości mniejdszej niż 0,5 mm, 0,7 mm i 1,0 mm

Efekt końcowy pokazuję na rysunku 21.

Podgrupa uchwytu górnego ver 2 zbliżenie

Rysunek 21 Wkładka zamontowana w suwak uchwytu

Zmieniłem również sposób łożyskowania. Zasada została ta sama, bowiem pozostały łożyska poprzeczne firmy IGUS, ale w celu zlikwidowania możliwych luzów wzdłużnych, zastosowałem sprężynę talerzową, co obrazuję na rysunku 22.

Podgrupa uchwytu dolnego uproszczonego rys 1

Rysunek 22 Poprawiony sposób łożyskowania

Zastosowane łożyska to pokazane na rysunku 23, łożysko ślizgowe o symbolu JFM-0405-06.

JFM-0405-06

Rysunek 23 Łożysko poprzeczne IGUS typ JFM-0405-06

oraz sprężyna talerzowa tzw. Polysorb o symbolu JTEM-05, pokazana na rysunku 24.

JTEM-05

Rysunek 24 Spręzyna talerzowa o symbolu JTEM-05

Powinienem jeszcze wyjaśnić dlaczego zastosowałem takie a nie inne łożyskowanie suwaka w uchwycie.

Proszę popatrzeć uważnie na fragment instrukcji EX-30, który pokazuję na rysunku 25.

Exkalibur fragment 3

Rysunek 25 Fragment instrukcji EX-30

W rzeczywistości wygląda to tak jak na rysunku 26.

IMG_5207

Rysunek 26 Elementy mocowania brzeszczota w uchwycie górnym

Jakoś nie mogę zaakceptować tak dużej ilości przypadków. Ja wiem, są pasowania jako lekarstwo na luzy, ale coś nie chce mi się wierzyć, że to jest dobre rozwiązanie. To ja przepraszam, to ja już wolę swoje.

Czas na uchwyt dolny, który jest w istocie odwróconym uchwytem górnym. No tak, ale przecież są miłośnicy mocowania w kamieniach, to może zrobię ukłon w ich stronę i coś tu wstawić? No i tak powstało rozwiązanie prezentowane na rysunku 27

Podgrupa uchytu dolnego z regulacją rys 1

Rysunek 27 Uchwyt dolny z kamieniem zaciskowym

Suwak dla tego rozwiązania musiał zostać zmieniony i teraz wygląda tak jak na rysunku 28.

Suwak ver 2 dolny rys 1

Rysunek 28 Suwak do uchwytu z kamieniem zaciskowym

Natomiast sam przedmiot troski, czyli kamień zaciskowy pokazuje na rysunkach 29 i 30.

Kamień zaciskowy ver 2 rys 2

Rysunek 29 Kamień zaciskowy – widok „A”

I widok z drugiej strony.

Kamień zaciskowy ver 2 rys 1

Rysunek 30 Kamień zaciskowy – widok „B”

Tu również zastosowałem zasadę dociskania brzeszczota do lewej ściany. Jeszcze nie przygotowałem rozwiązania z wkładką zaciskową aby można wykorzystać jeden kamień do brzeszczotów o różnej grubości.

Od dołu kamień podtrzymywany jest sprężyną, którą pokazuję na rysunku 31.

Zatrzask blaszany

Rysunek 31 Sprężyna osadcza kamienia zaciskowego

Kamień można łatwo osadzić na miejscu, wciskając go, co spowoduje ugięcie sprężyny i „wskoczenie” kamienia na swoje miejsce.Na rysunku 32, pokazuję uchwyt dolny przed osadzeniem kamienia.

Podgrupa uchytu dolnego z regulacją rys 4

Rysunek 32 Gniazdo osadzania kamienia zaciskowego w uchwycie dolnym.

W efekcie pojawia się sytuacja pokazana na rysunku 33.

Podgrupa uchytu dolnego z regulacją rys 3

Rysunek 33 Widok uchwytu dolnego z osadzonym kamieniem.

Zastanawiałem się nad średnicą trzpienia, o który zaczepia się kamień, ale po odnalezieniu zdjęcia pokazanego na rysunku 34, uspokoiłem się.

Replace_a_Scroll_Saw_Blade from

Rysunek 34 Zdjęcie kamienia zaciskowego znalezione w Internecie

Dotychczas omawiałem uchwyt z regulacją naprężenia brzeszczota. Regulacja ta może występować tak na górnym jak i dolnym uchwycie, ale jeśli to komuś nie odpowiada, może zastosować uchwyt bez regulacji, taki np. jak na rysunku 35.

Podgrupa uchwytu dolnego uproszczonego r1

Rysunek 35 Uchwyt bez regulacji naprężenia brzeszczota z kamieniem zaciskowym

W tym przypadku, ta część, która była suwakiem , musiała być zastąpiona elementem pokazanym na rysunku 36.

Uchwyt dolny lity

Rysunek 36 Element uchwytu przed montażem

Dalej już wszystko bez zmian. Trzpień i sprężyna osadcza itd. – rysunek 37 i wrócimy do podzaspołu pokazanego na rysunku 35.

Podgrupa uchwytu dolnego uproszczonego rys 3

Rysunek 37 Element uchwytu z zamocowaną sprężyną osadczą

Oczywiście można dać sobie z tym wszystkim spokój i trzymać się pierwotnego rozwiązania pokazanego na rysunku 38.

No można, tylko dlaczego zawsze chcemy lepiej, więcej, szybciej dalej, wyżej itd?

Podgrupa uchwytu dolnego bez reg

Rysunek 38 Podzespół mocowania brzeszczota w formie pierwotnej

No, to chyba dotarłem do celu i problem koncepcji mocowania brzeszczota, mam za sobą. Zostawiam ten temat i zabieram się za następne problemy, ale o tym w następnym wpisie.

Nieustannie licząc na Waszą aktywność, uwagi i sugestię, pozostaję w głębokim szacunku.

Janusz

 

Tagi: , , , , , , , , , , ,

Mimośród wyrzynarki włosowej – inne podejście

Aż strach znowu zaczynać.Od ostatniego wpisu upłynęły już wieki. W tym czasie każdy z nas czegoś tam dokonał, czegoś się nauczył, a doświadczenia albo go utwierdziły w dotychczasowych przekonaniach, albo zmusiły do zmian tych poglądów.

Nie jestem wyjątkiem, ale nie zamierzam w sposób gwałtowny dokonywać publicznej „rozbiórki”. Nie uznaję ekshibicjonizmu a poza tym za oknem zima. Niektórzy to lubią i jeszcze wchodzą do lodowatej wody. Ponoć to zdrowe, a w śniegowej aurze to nawet jakoś romantycznie?! Tylko czort wie w którym momencie romantyzm zmienia się na reumatyzm i choć brzmienie trochę podobne, to efekt jakiś inny.

A moje poglądy dotyczące wyrzynarek jakoś się nie zmieniły i nadal twierdzę, że tabakiera jest dla nosa, a nie odwrotnie. Czy moje pomysły dotyczące niektórych rozwiązań, już stosowanych lub możliwych do zastosowania, są realne, a więc wykonalne i przydatne? Zobaczymy! Poczekamy do wykonania prototypu.

Póki co, wszystkie pomysły traktuję jako koncepcję i proszę, aby w ten sposób do moich pomysłów podchodzić. Z tej przyczyny nie bawię się w dopieszczanie rozwiązania, nie zastanawiam się nad technologicznością, nie szukam sposobu na sprytne ułatwienie obsługi lub wykonania. Każdy powinien zrobić to po swojemu i na własny użytek, o ile oczywiście jest takim pomysłem zainteresowany.

Na samym początku proszę przypomnieć sobie moje uwagi dotyczące wyrzynarek włosowych. Założyłem, że:

  • stół roboczy jest elementem, który ma być nieruchomy i stabilny. To reszta „bałaganu” ma się poruszać, pochylać, obracać, itd.
  • problem częstotliwości ruchów piłki ma rozwiązać elektronika i dlatego tym problemem nie będę się zajmował,
  • skok piłki, nie musi być stały. A przynajmniej myślę, że NIE!!!! Pragnę nad tym problemem się zastanowić i to będzie główny temat tego i następnego lub następnych wpisów.
  • mocowanie piłki, mysi być proste i działać na zasadzie prostego zacisku.

Jest jeszcze kilka innych koncepcji czy wymogów, ale one wyjdą w trakcie prezentacji. Wszystkie projekty dotyczące problemu wyrzynarki modelarskiej realizować będę z wykorzystaniem GEOMAGIC DESIGN i INVENTORA.

Mam jednak dylemat. Bowiem zastanawiam się czy rysunki renderować czy też nie. Zostanę chyba przy wersji „saute”. Będzie łatwiej i szybciej. Renderowaniu poddam wersję „beta” wyrzynarki. Ale to za kilka dni.

Tak więc zaczniemy od modelu A mechanizmu zmiany promienia mimośrodu. Co prawda tego typu nazwa wcale mi się nie podoba, ale przecież nie o to chodzi.

Rys1

Rysunek 1 Model mechanizmu do zmiany promienia mimośrodu

Animacje tego modelu przedstawiłem na Youtube pod adresem: https://www.youtube.com/watch?v=mtvfML4TTd8

Zaczynam od widoku modelu aby przejść do szczegółów, tu zaś do zasadniczego podzespołu, czy podzespołu zmiany wykorbienia.

Rysunek 2

Rysunek 2 Widok modelu „A” mechanizmu zmiany wykorbienia

Jak widać z rysunku 1 mamy coś w rodzaju korpusu na którym umocowałem zębate koło pasowe. Tu akurat HTD 3 mm z 72 zębami. Model koła świeżo pobrałem z portalu, o którym wcześniej pisałem. Tym, którym nie chce się szukać, ponownie podaję link: https://sdp-si.com/eStore/CenterDistanceDesigner. Te żółte elementy to oczywiście łożyska ślizgowe mojego ulubionego IGUS-a, który wprowadził na rynek wiele nowych, bardzo ciekawych podzespołów i elementów. Nic tylko marzyc o worku takich cacek.

No dobrze, a co w środku naszego mechanizmu? Najpierw tył, bo tam jest regulacja. Ten szary ząbkowany element, to korpus widziany od tyłu. Ten brązowy z wycięciami, to pokrętło regulacji, a ten z trzema wkrętami, to coś w rodzaju płytki mocującej. Za chwilę będzie widać lepiej.

Rysunek 3

Rysunek 3 Mechanizm widziany od tyłu

Teraz ukrywam wszystkie w tym momencie nie potrzebne elementy, aby pokazać te dwa zasadnicze. Prezentuję je na rysunku 4. Jak mówi jeden Pan w telewizji, -„pokazuje i objaśniam”.

Rysunek 4

Rysunek 4 Elementy wewnętrzne układu regulacji.

Po lewej stronie widać talerzyk osadzony na osi, który od strony zewnętrznej ma umieszczony wałek. Jego odległość od osi talerzyka wynosi 15 mm.

Rysunek 15

Rysunek 5 Talerzyk i oś mimośrodu

Jak widać z rysunku 5,końcowa część osi nie jest spłaszczona, co umożliwia przekazywanie momentu na skojarzoną z talerzykiem, płytkę regulacji mimośrodu, pokazaną na rysunku 6.

Rysunek 16

Rysunek 6 Płytka regulacji mimośrodu

Wałek jest zakończony prowadzeniem, na którym osadzona została cześć regulacyjna, obracająca się razem z wałkiem mimośrodowym. Zachowana została jednocześnie możliwość przesuwu się wzdłuż osi wałka. Natomiast w celu umożliwienia powrotu, pomiędzy nimi osadzona została sprężyna. Pokazuję to na rysunkach 7 i 8.

Rysunek 6

Rysunek 7 Położenie części w stanie „A”

Rysunek 7 przedstawia oba elementy w stanie, który określiłem jako stan „A”, czyli „rozprężonym”. Oczywiście nie może być ty mowy o całkowitym rozprężeniu sprężyny, bowiem w takim przypadku, zasada powrotu płytki regulacji po jej naciśnięciu, nie byłaby możliwa do osiągnięcia.

Rysunek 7

Rysunek 8 Obie części w stanie ściśniętej sprężyny.

Teraz po umieszczeniu tych elementów w korpusie, co pokazuję na rysunku 9, można zablokować mimośród poprzez przykręcenie przedniej płytki blokady oraz założyć łożyska IGUS-a.

Rysunek 5

Rysunek 9 Mimośród osadzony w korpusie

Jak widać stosuję wkręty z łbem stożkowym. Czy to jest dobre rozwiązanie? Można dyskutować, bo niewątpliwie możliwe jest inne, bardziej eleganckie, ale teraz na potrzeby pokazania koncepcji, wkręty wystarczą.

Rysunek 8

Rysunek 10 Korpus z zamontowanym mimośrodem i łożyskami ślizgowymi.

Teraz zobaczmy jak to działa. W tym celu przyjrzyjmy się raz jeszcze elementom ulokowanym z tyłu mechanizmu, pokazanym na rysunku 3. Z rysunków 7 i 8 wynika, że element regulacyjny może się przesuwać wzdłuż swojej osi i obracać.

Rysunek 3

Rysunek 11 Mechanizm zmiany promienia mimośrodu widziany od tyłu.

Aby jednak sprężyna, o której wcześniej pisałem nie wypchnęła go, zastosowałem zwyczajną płytkę, albo jak kto woli talerzyk, który przymocowałem wkrętami, co pokazuję na rysunku 12..

Rysunek 17

Rysunek 12 Elementy podgrupy regulacji – sprężyna „zwolniona”

No i teraz zaczyna się akcja!!! Aż sam się z siebie śmieję, bo ponoć na samym początku ma być walnięcie pioruna, a potem napięcie ma rosnąć.. Tak czy owak, płytkę regulacyjną można, a nawet trzeba wcisnąć i ustawić w oczekiwanej pozycji, która skutkuje określonym promieniem mimośrodu.

Zaznaczyć tu muszę, że podzieliłem zakres regulacji nie na milimetry w sensie odległości osi, ale na stopnie, bo było mi łatwiej. Czyli jedno wycięcie od drugiego co 18 stopni. Ile to w milimetrach? NIE WIEM!!! Można policzyć, tylko czy warto. Przecież, już na etapie projektowania, można zrobić to, przepraszam za określenie „od tyłu”. Czyli wyznaczyć sobie odległość i „ciachnąć” wycięcie. Na obecnym etapie nie było takiej potrzeby i zrobiłem tak jak zrobiłem. Wybieram sobie numer, pamiętając, że 0 to 0, a 1 to 18 stopni. Czyli 2 to 36 itd. W sumie jakie to ma znaczenie, skoro zero, nie daje żadnego ruchu. Na samym końcu będzie filmik, to popatrzcie sobie. Na kolejnych rysunkach pokazuję pozycję ustawień i przykładowe odchylenia.

Proszę jednak pamiętać, że  mówimy o PROMIENIU a nie o średnicy!!!! A także o tym, że „0” to zero, a 10 to 180 stopni, czyli 15 mm. No, to powodzenia!!!

Rysunek 18

Rysunek 13 Sposób zmiany ustawienia mimośrodu

Regulacji wielkości mimośrodu polega na przytrzymaniu radełkowanej części obrotowego korpusu, wciśnięciu płytki regulacji i ustawieniu odpowiedniego skoku, pamiętając o wcześniejszych uwagach.  Oczywiście można wycięcia ustawić nie wg stopni ale wg mm, Jest to kwestia wygody. Na etapie koncepcji, przyjęcie podziału wg stopni było łatwiejsze i dlatego ten sposób wybrałem.

Rysunek 19

Rysunek 14 Ustawienie płytki mimośrodu na „zero”

No a teraz zobaczmy jak to się ma do odległości osi. Oczywiście nie będę odnosił pokazanych wyników do konkretnego ustawienia płytki. Jeśli komuś będzie to potrzebne, to proszę o kontakt.

Rysunek 22

Rysunek 15 Wynik pierwszego przykładowego ustawienia.

Na rysunku 16 pokazuję akurat wynik zerowy, co oznacza że płytka została ustawiona na 0 (zero). Oznacza to, że nawet jeśli silnik będzie pracował, to żadnego ruchu posuwisto-zwrotnego na suwaku, nie będzie.

Rysunek 23

Rysunek 16 Wynik drugiego przykładowego ustawienia, w tym przypadku na 0 (zero)

Na rysunku 17 pokazuję ustawienie dla maksymalnego promienia mimośrodu, czyli 15 mm.

Rysunek 24

Rysunek 17 Wynik maksymalnego ustawienia, czyli wycięcie 10

I tak dobrnęliśmy do końca tego odcinka. W następnym zajmiemy się inna koncepcją regulacji promienia mimośrodu. Ten, który dziś prezentuję, wymaga zatrzymania silnika i przestawienia płytki regulacji. Sposób jej przestawiania może być dowolny. Może to być jakiś specjalny klucz z wystającymi „pazurkami” albo jeszcze coś innego. Ja tu, dla wygody przyjąłem rozwiązanie najprostsze. Szło mi bowiem nie tyle o konkretne rozwiązanie, a o pokazanie zasady.

Poniżej załączam jeszcze te same elementy po renderingu, ale już bez komentarza.

Mechanizm regulacji mimośrodu 2.11 Mechanizm regulacji mimośrodu 2.12

Mechanizm regulacji mimośrodu 2.13

Mechanizm regulacji mimośrodu 2.14

Mechanizm regulacji mimośrodu 2.15

Mechanizm regulacji mimośrodu 2.16

Mechanizm regulacji mimośrodu 2.17

Mechanizm regulacji mimośrodu 2.18

Mechanizm regulacji mimośrodu 2a.21

Mechanizm regulacji mimośrodu 2a.22

 Licząc na Waszą aktywność, pozostaję z szacunkiem.

Janusz

 

Tagi: , , , , , , , , ,

Zaczynamy od zera – dziś początek strugarki modelarskiej w ZW3D

Czas biegnie nieubłaganie. Opublikować coś, to znaczy mieć co pokazać. A co zrobić, gdy nie chce się wracać do starego, a nauka nowego trwa jeszcze i w zasadzie, więcej jest pytań niż odpowiedzi? Zaczynając naukę obsługi oprogramowania, nawet mając już jakieś i to całkiem znośne doświadczenie, zadajemy sobie pytanie – „co poeta miał na myśli?”

Ktoś coś napisał, ktoś coś sobie wymyślił, ktoś inny przetłumaczył, a potem ktoś inny czyli MY, zastanawiamy się, co się ukrywa, pod daną ikonką albo komendą.

Jak zaznaczyłem w poprzednim wpisie, dostałem do nauki oprogramowanie EDU, programów ZW3D i SolidWorks, oraz INVENTOR. Teraz rozumiecie, skąd ten zawrót głowy. Chciałoby się naraz, pokazać co w tym oprogramowaniu fajnego i jak w nim się projektuje.

Zadanie szczytne, ale trudno jest porównywać komfort jazdy mercedesem, z komfortem innej marki, która ma wszelkie szanse na powodzenie, ale do pełnego luksusu, jeszcze jej trochę zostało. Mam tu na myśli ZW3D, bo pozostałe dwa programy, mają już ugruntowana pozycję. Podkreślam, ma pełne szanse, bo to potężne narzędzie, a do pełnego komfortu, potrzeba niewiele, ot jedynie….. sprawnego kierowcy, którym niestety nie jestem.

Na początku zawsze są koncepcje i ich fizyczne realizacje. Potem zaczyna się etap rozmyślania i zbierania uwag, które zazwyczaj koncentrują się wokół pytania, „A PO KIEGO GRZYBA MI TA OPCJA”. Pojawia się również inny problem, a mianowicie pytanie, „A DLACZEGO TAK NIE MOŻNA?”.

Dzisiejsze rozważania tylko częściowo pójdą w tym kierunku, bo całkowite skupienie się na nich, nie pozwoliłoby pokazać postępów w projektowaniu. Do tego tematu jednak wrócimy.

Zaczynam więc swego rodzaju poradnik dla nieporadnych, do których się zaliczam. No to, od początku, a początek prezentuje się całkiem sympatycznie, co widać na rysunku 1.

Rysunek 1

Rysunek 1 Strona startowa programu ZW3D

Skoro ma to być strugarka, to musi być coś co się kręci, ba musi mieć noże, jakaś regulację, stół i …Bóg jedyny wie, co jeszcze. Zaczynimy więc od zwykłego wałka, który jakby nie patrzeć, jest dla programu, czymś NOWYM. No to wybieram opcje „NOWA CZĘŚĆ”

Rysunek 2

Rysunek nr 2 Rozpoczynanie projektowania

Tu pojawia się swoista gra, bowiem program sam podpowiada mi nazwę części, ale również daje możliwość zapisania tej części pod moją unikalną nazwą. Przyznam się, przetrenowałem tę opcję, Nie dajcie się wpuścić w maliny, nazywajcie po swojemu, bo program jako np. „Część004.Z3” będzie widział to co w istocie jest wałkiem, podkładką czy wspornikiem. W trakcie złożenia, Wasze lenistwo albo nieuwaga, będzie się mścić, Dlatego bądźcie pedantyczni. Jednak i tu są ograniczenia, bowiem, kiedy nazwa będzie za długa, to albo będziecie musieli ją skrócić, albo nazwa zostanie skrócona automatycznie i zamiast „Oś bębenka mocowania noży ver 2”, powstanie nazwa „Ośbębenkamocowanianożyver2”.

Załóżmy jednak, że jakaś nazwa została przez użytkownika nadana, wówczas pojawia się ekran pokazany na rysunku 3 i możemy przystąpić do rysowania. Ja, w tym konkretnym przypadku, nadałem nazwę „Przykład 1”, co jest widoczne na górze, po prawej stronie.

Rysunek 3

Rysunek nr 3 Przypisanie nazwy elementu

Jak w każdym programie i tu, musimy zdecydować się, na jakiej płaszczyźnie chcemy rysować. Możemy oczywiście wykorzystać inna możliwość, bowiem ZW3D, proponuje nam skorzystanie z kreatora walca, prostopadłościanu, stożka itd. Możliwości jest tu wiele. My jednak zaczniemy rysować.

Każdy program ma swoją specyfikę, która, po doświadczeniach z np. ALIBRE, Solidworksem czy z INVENTOREM, może razić. Ba, może się wydawać czymś bardzo męczącym i cała sztuka polega na tym aby, odróżnić tę właśnie specyfikę, od tego co jest zwyczajnym „przekombinowaniem”

ZW3D nie jest wolny od tego grzechu, bowiem zostały tu powtykane informacje, absolutnie nieprzydatne, w procesie projektowania.

To co piszę, ma być poradnikiem dla nieporadnych, a przecież sam do nich się zaliczam, i dlatego mam pewne wątpliwości, bo może kiedyś, gdy już będę wiedział więcej, może się okazać, że to wszystko co widzę, właśnie się przydaje. Póki co, tak nie jest.

Ale do dzieła. Wybieram WSTAW SZKIC i zaraz program pyta się o płaszczyznę, na której chcę rysować. Z tym, że muszę ją fizycznie wskazać. Nie w sensie opisu, znajdującego się po lewej stronie, ot XY, XZ, ZY, ale poprzez kliknięcie na prostokątach symulujących te płaszczyzny. I to wszystko!

Rysunek 5

Rysunek 4 Wybór płaszczyzny szkicu

Program chce od nas jedynie takiej informacji, bo zaraz ustawia wszystko tak jak należy, aby nasze rysowanie było łatwiejsze.

Rysunek 6

Rysunek 5 Można zaczynać szkicowanie.

I już w tym miejscu, pojawiają się pewne propozycje, których nie rozumiem. Jak zaznaczyłem, jeszcze nieporadnie poruszam się po programie, ale już tutaj pachnie mi owym ‚przekombinowaniem”, a już przynajmniej,brakiem solidnego wyjaśnienia tych możliwości.

Proszę popatrzeć, na zbliżenie, pokazane na rysunku 7 i 8

Rysunek 7

Rysunek 6 Możliwości ustawienia – nie wiem czego

I druga opcja na rysunku 7

Rysunek 8

Rysunek 7 I znowu coś czego nie rozumiem

Co oznaczają te hasła, co się pod nimi kryje? Nie czas na poszukiwanie, bo do zaprojektowania wałka, nie potrzeba aż takich subtelności i dlatego zwyczajnie rysujemy. Tymi problemami zajmiemy się w następnych wpisach. Bo takich „kwiatków” jest sporo.

Rysunek 9

Rysunek 8 Szkic wałka

Teraz, skoro zdecydowałem się na taki rysunek, muszę go obrócić dookoła osi. Tu jednak, program się poprawia, daje swobodę i elegancję, bo nie muszę wskazywać konkretnej linii, wystarczy, ze wskażę oś na układzie współrzędnych pokazaną w lewym dolnym rogu ekranu.

Rysunek 10

Rysunek 9 Szkic po wyciągnięciu obrotowym.

Chciałoby się powiedzieć „ciach i zrobione”. No niby tak, ale dlaczego linia prosta nazywana jest krzywą, tego nie wiem.

A teraz po kolei następne ruchy, pokazane na kolejnych rysunkach. Zanim jednak o nich opowiem, muszę, wskazać pewna niedogodność. No, może nie do końca niedogodność, ale coś, co tak na pierwszy rzut oka umyka. Otóż zachciało mi się narysować efekt radełkowania. Czyli powinienem na płaszczyźnie prostopadłej do osi wałka narysować trójkąt, a następnie wyciąć go i powielić po okręgu. Fajnie, tylko tej płaszczyzny prostopadłej nie mogłem zobaczyć. Niby jest, rozmyta, ale niewrażliwa. Widać to na rysunku powyżej. Wystarczy jednak odsunąć obiekt, czyli go zmniejszyć i płaszczyzny wszystkie pojawiają się w całej okazałości.

Rysunek 11

Rysunek 10 Pomniejszenie obiektu jest sposobem na odnalezienie płaszczyzn

Teraz można rysować! Jednak zanim to odkryłem, zrobiłem inny ruch, a mianowicie wstawiłem dodatkową płaszczyznę i na niej narysowałem to o czym pisałem wyżej. Potem to już sami wiecie.

Rysunek 12

Rysunek nr 11 Wałek po wyciągnięciu po obwodzie – widoczny efekt radełkowania.

Sądząc, że na tym koniec, postanowiłem troszkę „podrasować” wygląd i w efekcie powstało coś takiego.

Rysunek 13

Rysunek 12 Zmiana wizualizacji

Doszedłem jednak do wniosku, że warto by zaznaczyć jakiś gwint, i w efekcie, uzyskałem postać pokazana na rysunku 14.

Rysunek 14

Rysunek 13 Wycięty gwint

Czy wszystko w tracie tworzenia było jasne? Nie, oczywiście, że nie, ale jak zaznaczyłem, postaram się do tego wrócić w następnych wpisach. podkreślam raz jeszcze, jestem tak samo nieporadny jak wielu, którzy zaczynali.

Teraz zaś kilka słów o pozostałych elementach. Przedstawiam je w kolejności z krótkim opisem.

Rysunek 15

Rysunek nr 14 Bębenek mocowania noży

Na rysunku powyżej przedstawiam element, który nazwałem bębenkiem mocowania noży. Może trywialnie, ale jakoś tak mnie naszło. Pragnę jednak zwrócić uwagę, na to o czym pisałem wcześniej. Oto mamy nazwę przeze mnie nadaną i obok narzuconą przez program. Stało się to z tej przyczyny, że na samym początku narysowałem tę część ale nie nadałem jej indywidualnej nazwy. Program zrobił to po swojemu. Ja zaś stworzyłem wersje 2, a potem 3, i już zapisałem pod swoja nazwą, ale ta narzucona przez program, została.

Może jest na to jakiś sposób. Zobaczymy.

Rysunek 16

Rysunek 15 Obsada noża

Następnym elementem jest część, którą nazwałem obsada noża. Problem z jej nazwą również się pojawił, o czym świadczy treść, znajdująca się na najwyższej listwie. W tym miejscu, zaznaczyć muszę, że rozmieszczenie otworów w ZW3D, nie jest takie proste, bowiem nie znalazłem sposobu na bezpośrednia edycję ich lokalizacji. Robię to poprzez umieszczenie punktu, jako szkicu i do niego „przyklejam” otwór. Może jest jakiś inny sposób, ale póki co, robię tak jak opisuję.

Rysunek 17

Rysunek nr 16 Nóż strugarki modelarskiej

Nóż strugarki wymyśliłem jako płaskownik ze stali narzędziowej, który będzie dociskany do ściany bębenka. Zresztą to wszystko, najlepiej zobaczyć na złożeniu.

Rysunek 18

Rysunek 17 Podgrupa bębenka

Regulacja położenia noży możliwa jest poprzez zmianę ustawienia wkrętów zlokalizowanych na płaszczyźnie obsady noża, co pokazuję na rysunku 19

Rysunek 19

Rysunek 18 Wkręty regulacji wysokości noża

Uznaję, że omawianie śrub dociskowych i łożysk, rodem z IGUS-a, nie jest potrzebne.

Teraz przychodzi czas na pozostałe elementy. To jednak w następnych wpisach, jak również i omówienie tych opcji, które na obecnym etapie mojej znajomości oprogramowania, są zbędne albo nie zrozumiale. Są również i takie, które w sensie funkcjonalnym są oczywiste, lecz ich tłumaczenie jest moim zdaniem „dziwne”.

Tak więc do miłego następnego spotkania. Tym, którzy odpoczywają, życzę miłego urlopu, zaś zapracowanym, cierpliwości i siły.

Janusz

 
2 Komentarze

Opublikował/a w dniu 18 lipca 2013 w ZW3D - niepoznane mozliwości

 

Tagi: , , , , ,

Zmieniamy kąt ustawienia tarczy tnącej – część 2

Dzisiaj chciałbym zakończyć omawianie konstrukcji amatorskiej mini pilarki ze zmiennym ustawieniem kąta tarczy tnącej.

Praktycznie do omówienia został jedynie podzespół podnoszenia tarczy. W sumie rzecz banalna, ale jak to zazwyczaj bywa, problem tkwi w szczegółach.

Jednak zanim przejdziemy do sedna sprawy, pragnę podzielić się pewnymi informacjami. Otóż nigdy nie ukrywałem, że problem studiów, dawno już mam za sobą. Nie mogę więc powiedzieć, że nawet w ułamku procenta jestem studentem. Nie korzystam również z adresu e-mailowego wiążącego mnie z jakąkolwiek uczelnią. Z tej przyczyny należałoby oczekiwać, że możliwość użytkowania oprogramowania edukacyjnego z natury rzeczy jest ograniczona. Nic bardziej błędnego. Współczesne firmy, zajmujące się oprogramowaniem inżynierskim, acz z natury zainteresowane młodym narybkiem, pamiętają również o tych, którzy choć z tego okresu już wyrośli, nadal maja ochotę się uczyć. To wielka mądrość, na którą stać tylko pokornych wobec wiedzy.

Do tej pory korzystałem z oprogramowania Alibre, ale jak wiecie, teraz to już Geomagic Design. Ja zaś pozostałem przy Alibre w wersji 2012. I nie dość, że nazwa jest inna, to i oprogramowanie już nie do końca aktualne. Z tej przyczyny jakoś mi głupio wychwalać możliwości Alibre, bo mógłbym być posądzony o to, że promuję projektowanie z wykorzystaniem nieaktualnych narzędzi.  Przepraszam, może to głupie, ale takie jest moje zdanie.

Dlatego, pomimo faktu, że  nadal będę publikował prace wykonane w tym programie, bo już fizycznie zostały zrobione i warto je pokazać, to jednak, byłoby dziwne, gdybym Szanownego Gościa odsyłał do oprogramowania Geomagic Design, którego w istocie nie znam. Niewątpliwie jest podobne do Alibre, ale są różnice, tylko jakie – nie wiem.

Mając to wszystko na względzie zwróciłem się do kilku firm z zapytaniem, czy udostępnią mi swoje oprogramowanie w wersji studenckiej, ot takiej do nauki i… bez problemów otrzymałem. Zarejestrowałem się na stronie AUTODESK. Dalej poszło z automatu. Nie skłamałem w ani jednym słowie, ba napisałem, że jestem już na emeryturze. No i co? Dostałem klucz i pobrałem pliki źródłowe. Co prawda były z tym problemy, bo są bardzo duże, ale w końcu się udało, no i mam licencję na roczne użytkowanie INVENTORA. Cieszę się i dziękuję.

Nie mniej największą radość sprawiła mi rozmowa z przedstawicielem Firmy CNC Solutions z Warszawy, od której otrzymałem roczną licencję na studencką wersję SolidWorks.

Ku mojemu zdziwieniu, to co na początku wydawało mi się trudne, bo tu filozofia jest trochę inna, praca w SolidWorks, to sama przyjemność. Nie ukrywam, mam jeszcze pewne problemy, bo nie wiem, co kryje się pod niektórymi komendami, ale na wszystko przyjdzie czas. Nie zawracam nikomu głowy swoja niewiedzą i do wszystkiego staram się dojść samemu. Mam jednak pewność, że gdy się potknę, zawsze uzyskam pomoc.

Zresztą wejdźcie na Ich stronę i popatrzcie sami – link. Jasno, klarownie i kompetentnie. Jak przystało na robotę inżyniera. Od oprogramowania przez sprzęt do literatury. Co prawda, dla wielu, w tym dla mnie, spora część oferty, to tylko marzenie, ale przecież tu nie idzie o przysłowiowego Kowalskiego, ale o firmę, która na tym oprogramowaniu i sprzęcie ma zarabiać. A co do mnie, to  pragnę szczerze i serdecznie podziękować.

Teraz jednak do rzeczy.

We wcześniejszych wpisach, poruszałem problem sterowania, bo byłoby całkiem fajnie, gdyby zamiast pokręteł, można było zastosować silnik krokowy, który ustawiłby zarówno ką ciecia jak i wysokość tarczy. Oczywiście podchodzę do tego w sposób opcjonalny. Póki co, proponuję rozwiązanie czysto mechaniczne. Gdy pojawi się jednak możliwość, przedstawię kolejną wersję.

Omawiam podzespół ciecia i regulacji ustawienia tarczy, który przedstawiam na rysunku 1. Część elementów opisana została w części 1, ale ponieważ są one ze sobą skojarzone, prezentuje je raz jeszcze. Jak zawsze, w każdym możliwym miejscu, wykorzystuje elementy gotowe, firmy IGUS, które doskonale ułatwiają mi pracę. Co innego z wykonawcami prototypów. Widać takie mam szczęście.

No ale do rzeczy. Zaczynamy od rysunku 1.

Blok mocowania zepołu tarczy V11- 2

Rysunek 1 Podzespół tnący i regulacji wysokości ustawienia tarczy

Te same elementy, po renderowaniu pokazuję na rysunku 2.

Grupa cięcia 1.217

Rysunek 2 Podzespół tnący i regulacji wysokości ustawienia tarczy – rysunek po renderingu

Tarcza tnąca osadzona jest na osi, pokazanej na rysunku 3.

Oś tarczy tnącej do v11.223

Rysunek 3 Oś tarczy tnącej.

Oś ta, została ułożyskowana przy pomocy łożysk ślizgowych  o symbolu  GFM 1012-07, które pokazuję na rysunku nr 4.

GFM-1012-07 do V11.222

Rysunek 4 Łożysko ślizgowe GFM 1012-07, firmy IGUS

Pomiędzy tarczę i powierzchnią czołową wałka umieszczony został pierścień dystansowy, pokazany na rysunku 5

Pierścień redukcyjny tarczy tnącej Fiwewn 10 do v11.224

Rysunek 5 Pierścień dystansowy.

Natomiast tarcza dokręcana jest specjalna śrubą, pokazana na rysunku 6.

Tarcza dociskowa do V11.225

Rysunek 6 Śruba mocowania tarczy.

Teraz czas na drugą stronę. pomiędzy zębatym kołem pasowym a łożyskiem, pokazanym wcześniej na rysunku 4, umieściłem podkładkę i dodatkowo sprężynę talerzową, również IGUS-a. Nie wiem czy to nie zbytnia ostrożność, ale wyszedłem z założenia, że na etapie prototypu, zawsze można się jej pozbyć, zgodnie z zasadą, że łatwiej coś „wycieńkować” niż „zgrubowaćić”.

Zębate koło pasowe do v11.226

Rysunek 7 Zębate koło pasowe

No i te wszystkie elementy zostały osadzone w korpusie pokazanym na rysunku 8.

Blok mocowania zepołu tarczy V11.226

Rysunek 8 Korpus podzespołu tnącego

W przekroju, to wszystko o czym do tej pory pisałem wygląda tak jak na rysunku 9.

Podgrupa zespołu tnącego V11 - przekrój

Rysunek 9 Przekrój podzespołu tnącego.

Czas na pozostałe elementy.Zacznijmy od śruby regulacji wysokości ustawienia tarczy, która na rysunku 10, oznaczona została kolorem różowym.

Śruba regulacji - 2

Rysunek 10 Lokalizacja śruby regulacji wysokości ustawienia tarczy

Jej położenie, stabilizowane jest pokrywką, zabezpieczona trzema wkrętami M3, co widać na rysunku 11.

Śruba regulacji

Rysunek 11 Płytka ustalająca śrubę regulacji

Następnie do boków korpusu, przykręcone zostają sanie TW-04-12, pokazane na rysunku 12.

TW-04-12.221

Rysunek 12 Sanie TW-04-12 do zakupienia w firmie IGUS

W podsumowaniu tego co napisałem do tej pory, prezentuje rendering – patrz rys. 13.

Grupa cięcia 1.215

Rysunek 13 Lokalizacja śruby regulacji wysokości

To samo widziane z innej strony – rysunek 14.

Grupa cięcia 1.216

Rysunek 14

Teraz pozostaje przykręcić prowadnice sprężyn napinających – rysunek 15.

Podgrupa zespołu tnącego V11.163

Rysunek 15 Zamontowane prowadnice sprężyn napinających

I założyć, a następnie przykręcić wkrętami M3, usztywnienie prowadnic, pokazane na rysunku 16.

Usztywnienie prowadnic do v11.227

Rysunek 16 Usztywnienie prowadnic

Prowadnice, które nazywam szynami i tzw. łyżki, omówiłem w części pierwszej, dlatego pozwolę sobie tego wątku nie rozwijać. Na rysunku 17 pokazuję całość podzespołu regulacji wysokości ustawienia tarczy tnącej.

Grupa cięcia 1.217

Rysunek 17

Całość widoczna z innej strony – rysunek 18.

Grupa cięcia 1.218

Rysunek 18 Podzespół tnący i regulacji wysokości ustawienia tarczy – rysunek po renderingu

No i tak dobrnęliśmy do końca tego zagadnienia. Wszystkie pliki źródłowe są dostępne bezpłatnie. Można je pobrać z portalu GRABCAD, albo napisać do mnie, a wówczas prześlę je na podany adres e-mailowy.

Rozpoczął się sezon urlopowy. Z tej przyczyny, tym, którzy już wypoczywają, życzę miłych wrażeń i wspanialej pogody, zaś tym, którzy muszą na urlop jeszcze poczekać, życzę cierpliwości.

Wszystkich serdecznie pozdrawiam, nieustannie czekając na komentarze.

Janusz

 

Tagi: , , , , , , , , ,

Zmieniamy kąt ustawienia tarczy tnącej – część 1

Czas już dobijać do brzegu. jeszcze tylko kilka wariantów i zamkniemy sprawę pilarki modelarskiej. Zakładam oczywiście, że szanowny WordPress nie padnie, tak jak to było ostatnio.

Aby zabezpieczyć się na przyszłość, podjęte zostały starania, aby przenieść całą zawartość blogu na stronę www.bazaprojektow3d.pl. Zapamiętajcie ten adres i starajcie się wchodzić na blog, poprzez ten adres. Do czasu, gdy strona nie ruszy, zostaniecie przekierowani na blog. Natomiast, gdy strona zacznie swój własny byt. będziecie tam gdzie trzeba.

Po długich dyskusjach z wykonawcami, zmierzam do końca procesu projektowania nietypowego łożyskowaniem ustawienia tarczy tnącej. Ostatecznie uzgodnione zostało, że dla każdego majsterkowicza, będzie wygodniej i bezpieczniej, gdy zasadnicze części łożyskowania wykonane zostaną metodą toczenia.  Reszta elementów, poza typowymi, pochodzącymi z firmy IGUS, mogą i w zasadzie powinny być wykonane metodą wycinania laserowego. Należy jednak pamiętać, że wiara w szczególną dokładność tej metody, jest mrzonką i należy tu wykazać dalece idącą ostrożność. Zacznijmy więc od jej koncepcji, prezentowanej na rysunku 1

Nowe Złożenie (1)

Rysunek nr 1 Część ruchoma łożyska ustawienia tarczy

Poniżej pokazuję wszystkie elementy występujące w tym podzłożeniu, oczywiście poza wkrętami. Tak więc mamy część wewnętrzną łożyska, co pokazuję na rysunku 2. Oczywiście metal, obróbka toczeniem z obostrzeniami tolerancji i gładkości powierzchni.

Górna część łożyska łyżki lewej do v11

Rysunek 2 Część wewnętrzna łożyska

W rzucie pokazanym na rysunku 3 widać specjalne podtoczenie, ułatwiające ulokowanie w „łyżce”.

Górna część łożyska łyżki lewej do v11-a

Rysunek 3 Widoczne podtoczenie.

Rysunek 4 przedstawia element, który na roboczo, nazwałem „łyżką”. Przyjąłem, że będzie „ona” wypalona laserowo, a następnie, niestety ręcznie, dopasowana. Może należałoby wyciąć ją na frezarce CNC, ale póki co, takiej ewentualności nie przewiduję.

Łyżka L V10B do v11

Rysunek 4 Element, który nazwałem „łyżką”

Do kompletu potrzeba jeszcze prowadnicy, rodem z firmy IGUS, odpowiednio przyciętej i nawierconej. W katalogu nosi nazwę – szyna TS-04-12, co pokazuję na rysunku 5.

Szyna TS-04-12 V8AL do V11

Rysunek 5 Szyna TS-04-12 firmy IGUS

No i dochodzimy do chyba najważniejszego elementu, czyli do części zewnętrznej łożyska, którą pokazuję na rysunku 6. Ten element wykonany powinien być z materiału o nazwie IGLIDUR. Nie będę opisywał jego właściwości mechanicznych ani tribologicznych, ale proszę mi wierzyć, w tym przypadku jest jak z Coca-Colą, zwyczajnie TO JEST TO!!!!

Obróbka również na tokarce, z zachowaniem wszelkich wymogów tolerancji i pasowań. Odsyłam na stronę firmy IGUS. Tam znajdziecie wszystkie niezbędne informacje.

Łozysko zewnętrzne do v11

Rysunek 6 Część zewnętrzna łożyska.

Inny rzut, widoczny na rysunku 7, pokazuje trzy dziwne wgłębienia. Są to gniazda sprężyn talerzowych o symbolu JTEM-06, których zadaniem będzie kasowanie luzów poosiowych.

Łozysko zewnętrzne do v11 a

Rysunek 7 Część zewnętrzna łożyska z widocznymi gniazdami na sprężyny talerzowe JTEM-06

Po zmontowaniu wyżej wymienionych elementów, uzyskujemy podgrupę, albo jak kto woli, podzespół, łożyska wewnętrznego, oznaczonego literami L – lewa i P – prawa. Na rysunku 8 pokazuję podgrupę lewą. Różnica sprowadza się do lustrzanego obcięcia krawędzi w elementach wewnętrznych.

Nowe Złożenie (2)

Rysunek 8 Podgrupa lewa łożyska

Na rysunku 9 pokazuję tę samą podgrupę, ale w innym rzucie, dlatego pozwólcie, że jedynie nadam rysunkowi numer i umieszczę go bez komentarza.

Nowe Złożenie (3)

Rysunek 9

Teraz cześć najtrudniejsza i chyba najbardziej kosztowna, czyli obudowa łożysk, którą pokazuje na rysunku 10. Jak widać posiada ona dwa cylindryczne wycięcia. Ich położenie na osi pionowej, jest o tyle istotne, że decyduje o lokalizacji osi obrotu. Z tej przyczyny, oba wycięcia MUSZĄ być dokładnie współosiowe. Nawet, jeśli nastąpi jakaś pomyłka i zostaną one przesunięte w górę albo w dół, to zawsze istnieje możliwość korekcji. Jednak bez współosiowości, przyjęte założenie konstrukcyjne, nie ma sensu. Tolerancja średnicy tych „półkolistych” wycięć, musi być dokładnie zgrana ze średnicą zewnętrzną elementów łożyska. Tu musi być zachowane pasowanie „rozsądnie” suwliwe. Ten fragment  wyjaśniony zostanie w dalszej części na animacji.

Obejma łożysk do V9 do V11

Rysunek 10 Obejma łożysk

Poniżej na rysunku 11 to samo, ale po renderingu.

Obejma łożysk do V9 do V11.177

Rysunek 11 Nawet taka zwykła obejma, po renderingu lepiej wygląda.

Pokazana powyżej obejma, może oczywiście być wykonana w inny sposób. Może być spawana, ale wówczas należy pamiętać o koniecznej obróbce, poprzedzonej wyżarzaniem odprężającym. Nie wiem, czy to się opłaca, ale kto wie?

Przyznać trzeba, że po renderingu, lepiej to wygląda. I pomyśleć, że do niedawna uważałem ten zabieg za zbędny. Teraz jednak widzę, że KeyShot, to fajne narzędzie.

Przystąpmy jednak do wirtualnego montażu. Mając przygotowane gniazda, możemy osadzić łożyska, odejmując jeden stopień swobody, czyli obrót części zewnętrznej, poprzez przykręcenie płytek ustalających. Należy jednak pamiętać, że łożysko powinno swobodnie się przesuwać poosiowo.

Nowe Złożenie (5)

Rysunek 12 Początek „montażu” czyli komponowanie złożenia podzespołów.

Pokazuje to również na rysunku 13, już po renderingu. Na kolejnych będę odsłaniał pozostałe elementy, aby pokazać co dokładam i co tak naprawdę jest ukryte w obudowie.

M0.178

Rysunek 13 Pierwszy etap wirtualnego montażu

Teraz dołożyłem listwy, na których zostały osadzone „wózki” NW-02-17. Na zewnętrznych częściach łożyska widoczne sprężyny talerzowe JTEM-06

M0.179

Rysunek 14 Widoczne listwy z wózkami NW i sprężyny talerzowe JTEM

Na rysunku 15 pokazuję osadzony na prowadnicach podzespół cięcia oraz słabo widoczne przesztywnienie.

M0.180

Rysunek 15

Przesztywnienie to lepiej widać na rysunku 16.

M0.181

Rysunek 16

Przesztywnienie zaprojektowałem jako element będący jednocześnie gniazdem dla śruby regulacji głębokości i prowadnic sprężyn napinających – rysunek 17.

Usztywnienie prowadnic do v11

Rysunek 17 Przesztywnienie prowadnic.

Teraz czas na podzespół regulacji kąta cięcia, co pokazuję na rysunku 18 i 19.

M0.184

Rysunek 18

Na rysunku 19 widoczne są wszystkie elementy podzespołu regulacji kata cięcia. Co prawda można się zdziwić, że pokrętło zawieszone jest w powietrzu, ale aby pokazać wszystko, zmuszony jestem ukryć obudowę, do której jest ono przymocowane.

M0.185

Rysunek 19

Całość „wnętrza”, pokazuję na rysunku 20. Na nim już zaznaczyłem fragmenty stołów, choć przez niedopatrzenie, ukryłem sprężyny talerzowe.

Mini saw ver 11 ins.168

Rysunek 20

Po odsłonięciu obudowy otrzymujemy prawie gotową całość, pokazana na rysunku 21 i 22.

M0.186

Rysunek 21

Widok z innej strony

M0.187

Rysunek 22

Całość pokazuje na rysunku 23. Uwidoczniłem na nim wszystkie elementy wraz z prowadnicami. Część rozwiązań znana jest z poprzednich wpisów. Dziś jednak pokazuję rozwiązanie prostsze, choć nie najprostsze. W kolejnym wpisie zajmiemy się kolejnymi uproszczeniami.

M0.193

Rysunek 23

Aby ułatwić zarówno ustawianie kąta cięcia, jak i dodatkowo usztywnić układ, przyjąłem rozwiązanie, którego zasada pokazana została na rysunku 24 i 25

Mini saw ver 11.169

Rysunek 24

Ustawienie dla kąta 45 stopni.

Mini saw ver 11-45.181

Rysunek 25

Na poniższej animacji pokazuję pozostałe elementy, których do tej pory nie omówiłem. Tym i innym problemom poświęcony zostanie następny wpis.

Tak więc dobrnęliśmy do końca części pierwszej opisu mini pilarki o zmiennym kacie cięcia. Wszystkie rysunki dostępne są na portalu http://grabcad.com

M0.191

Rysunek 26

Zainteresowanych zapraszam do dyskusji i komentowania.

Wszystkich serdecznie pozdrawiam.

Janusz

 

Tagi: , , , , , , ,